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Continuing our treatment of magnetic vortices in superconductors through Ginzburg-Landau theory.

I. FORCES ON VORTICES

After finding the force exerted by one vortex on another it is possible to calculate the force exerted

on a single vortex by an externally-imposed transport current J⃗ . This situation arises, for example, in
a solenoidal high field magnet when the field created by the current enters the superconducting wire.

Imagine an infinite line of parallel vortices and look at the net current produced by all the vortices at
a point some perpendicular distance away. All of those current contributions will super-impose to create
a current flowing parallel to the line. Placing a test vortex of the same vorticity there will create a net
force which is given by,

f⃗ = J⃗ × Φ0ẑ.
We also know intuitively that the line of parallel vortices will exert a repulsive force on the test vortex,
and this will directed perpendicular to the line. Again the vortex will move perpendicular to the applied
current in a Lorentz force-like manner.

As the vortex moves there is a time-rate-of-change of the magnetic field at locations around the vortex

core. By Faraday’s law this ∂B⃗/∂t gives rise to an electric field as ▽⃗ × E⃗ = −∂B⃗/∂t. If the flux is out
of the page and the current is flowing from left to right, the force exerted on the vortex is downward.

As the vortex moves −∂B⃗/∂t points out of the page at the instantaneous location of the vortex and

−∂B⃗/∂t points in to the page just below there in the direction of motion. These contributions both give
an electric field pointing to the right, in the direction of the current. This will produce Ohmic losses in
the normal core of the vortex, resulting in dissipation as the vortex moves. The superconductor now has
a non-zero dc resistance. Finding ways to prevent the vortices from moving under such circumstances
is essential to restore the zero-resistance properties of superconductors in a magnetic field. This is the
subject of “vortex pinning”.

Now imagine a collection of vortices being acted upon by a uniform current J⃗ . If each vortex experi-
ences the same current, it will also experience the same force, and the entire lattice will move together

as a unit. As the vortices move the electric field induced is given by E⃗ = B⃗ × v⃗v, where v⃗v is the vortex

velocity. This electric field is parallel to J⃗ . Write the magnetic flux density as |B⃗| = nvΦ0, where nv is

the number of vortices per unit area. Energy will be dissipated at a rate of W = J⃗ · E⃗ per unit volume.

Where does the dissipated energy go? The Bardeen-Stephen model says that it is dissipated by
inducing Ohmic currents in the normal core of the vortex. The power dissipated by a single vortex is(
πa2Lz

)
ρnJ

2, where a is the radius of the vortex core, Lz is the length of the vortex in the supercon-
ductor, ρn is the resistivity of the electron fluid in the vortex core, often taken to be the normal state
resistivity of the metal. The power dissipated in the entire sample is

(
πa2Lz

)
ρnJ

2nvA, where A is the

area of the sample. Finally, the power dissipated per unit volume of the sample is πa2ρnJ
2nv. Equating

this toW = JE yields an expression for the flux-flow resistivity: E = ρffJ , with ρff = πa2ρn
B
Φ0

. Recall

that µ0Hc2 = Φ0

2πξ2GL
, so taking a ≈ ξGL gives ρff ≈ ρn

B
Bc2

. Hence the flux flow resistivity is the normal

state resistivity times the fractional coverage of the sample with vortex cores. This prediction for the
magneto-resistance of a superconductor is in generally good agreement with data for low-temperature
superconductors, as shown on the class web site.

The flux flow resistivity can be associated with a vortex viscous force. Solving for the vortex velocity
in terms of the flux flow resistivity above yields vv = ρnJ/Bc2. The fact that the vortex velocity scales
with the applied current implies an equilibrium between a driving force and a dissipative force. We call

this latter force the viscous drag force on the vortex, f⃗drag = −ηv⃗v with η = JΦ0

vv
, or η = Φ0

ρn
Bc2.

The equation of motion for a single vortex acted upon by a current is then
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J⃗ × Φ0ẑ − ηv⃗v + F⃗pin = 0, where F⃗pin is the pinning force on the vortex, which we discuss next.

II. VORTEX PINNING

Up to this point we have assumed that the superconductor is in the extreme type-II limit where
λeff ≫ ξGL, so that κ ≫ 1. This has allowed us to ignore the vortex core compared to the energy
invested in the magnetic field and super-current density distributions of the vortex. Now we go back
and include the effects of the core on vortex dynamics.

Any region in space where the magnitude of the superconducting order parameter is reduced is a
potential vortex pinning site. If there is a region with |ψ| = 0 of length Dz along the field direction, then

the free energy gain of locating the vortex core there is ∆F0 =
µ0H

2
c

2 πξ2GLDz, as compared to locating in
a region of space where ψ = ψ∞. Removing the vortex core from this location requires a finite energy. As
long as the vortex is stationary in the presence of a current there will be no energy dissipation. This means
that the superconductor has a new kind of critical current, dictated by the strength of the vortex pinning.

Pinning can be thought of (to first approximation) as creating a Hooke’s law restoring force for the

vortex as F⃗pin = −k(x⃗ − x⃗0), where x⃗0 is the pinning location and x⃗ is the instantaneous location of
the vortex core. The fine art of vortex pinning is to make the superconductor in to “Swiss cheese” by
suppressing the order parameter in limited cylindrical regions to pin the cores, but leaving the remainder
un-touched so that it can support the superconducting screening and transport currents. In this way one
can have a zero resistance state in high magnetic field in the presence of a transport current, but only up
to a point in either temperature, current or magnetic field. See the class website for a Review article on
vortex pinning, and slides illustrating the microscopics of vortex pinning simulated by time-dependent
Ginzburg-Landau theory.

Low-Tc superconductors can display “collective pinning” if they have a sufficiently rigid vortex lattice
structure. In this case, pinning a single vortex effectively pins the entire lattice.

Under the influence of a large transport current, the Lorentz force on the vortex can exceed the
pinning force, causing the vortex to de-pin. This vortex is then free to move and to dissipate energy,
destroying the zero-resistance property of the superconducting state. The current at which this happens
is called the de-pinning critical current, Jde−pin

c . In general this current density is smaller than the
thermodynamic critical current density, or Jde−pin

c < JGL
c = Hc/λeff .

One can also have the phenomenon of Thermally-Assisted Flux Flow (TAFF) in which vortices move
between different pinning sites in a disordered pinning landscape due to thermally-activated motion. This
is an issue with high-Tc superconductors at higher temperatures where kBT can become a substantial
fraction of the pinning energies.
The forces acting on a single vortex under the influence of an alternating current can be summarized

with the Gittleman-Rosenblum model. This model predicts that vortex dissipation increases dramatically
for driving frequencies beyond the “depinning frequency” given by ωdepin = k/η, where the η is the vortex
viscosity and k is the Hookes law restoring force constant.
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